CONTEXT

We consider the problem of multi-output learning in context of
kernel methods and operator-valued kernel learning.

Multi-output learning

» Outputs of learning task are vectors, y; € RP

» Operator-valued kernels learn vector-valued functions, and
offer a natural solution to multi-output learning.

Kernel learning

» Motivation: how to choose a good kernels? Kernel learning
tries to find suitable kernel based on data instead of fixing it
in advance.

» Learning separable operator-valued kernels is common but
restrictive:

» all similarities share the structure
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» only symmetric interactions allowed
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» Is there a way to learn unseparable kernels that model more
complex dependencies between input and output variables?

OPERATOR-VALUED KERNELS
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Examples of operator-valued kernels

» Separable:
K(X,z) = k(x,2)T VXx,zec X

where k is a scalar-valued kernel and T € RP*P js
symmetric

» Sum of separable:

K(x,2)=» k(x.2)T, VxzeX,
/
k; are scalar-valued kernels, T; € RP*P are symmetric

» Transformabile:

K(x,z) = [%(Smx, S,z)}p , VX,ze X

[, m=1
where {St}f:1 are mappings which transform the data from
X to another space X where k is defined.

PARTIAL TRACE KERNELS
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OPERATOR-VALUED KERNEL CLASSES

Partial trace
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Entangled y Sum of Sep.

lllustration of inclusions among various operator-valued kernel classes.

Example 1. (Transformable and not separable kernel) On the
space X = R, consider the kernel

K(x,z) = (

Xz x2z°2

VXx.ze X.
X°Z x222> ’ !

» Transformable: choose k(x,z) = xz, S{(x) = X, and
So(X) = X2

» For a separable kernel the matrix T is always symmetric and
since the matrix K(X, z) is not, K Is not a separable kernel

Example 2. (Transformable and separable kernel) Let K be the
kernel function defined as

K(x,z)=(x,2)T, VX,ze X,
where T € RP*P js a rank one positive semidefinite matrix.

» K IS separable by construction.

» Since T is of rank one, it follows thatT = uu' and
(K(X,2)),, = uum(x,z).

» We can see that K is transformable by replacing F(x, z) by
(X,2z) and Si(x) byusx, t=1,...,p.

Example 3. (Partial trace contains sum of separable) Choose

Pox)oz) = 2_ T (a1(X)9)(2) ).
/

Example 4. (Partial trace contains transformable) Choose
~ ~ T
[Pa(x),g(z)]/,m — (¢ © SI(X)) (Qb O Sm(z)) :

ENTANGLED KERNELS

Definition 2. (Entangled kernel)
An entangled operator-valued kernel K is defined as

K(x.2) = trc (U(T @ (6(x)6(z) ))UT) 2)

where U € RPN*PN js not separable (i.e. it cannot be written
as product A ® B).

Remark. Entangled kernels are subclass of partial trace kernels

Example 5. (Entangled and transformable) Choose linear kernel
(p(X) = X) and mappings Sm to be linear, such that we can write
matrix U = diag(|Sq --- Sp|). Now the entangled kernel with

operator
Pyx).0(z) = U([lplpl @ (x2"))U'
= U([XZT]I/?m:OUT
_Sp S,

is clearly also transformable with k a linear kernel.

Theorem 1. (Choi-Kraus representation)

The map K(X,z) = tr (U(T ® (cb(x)qb(z)T))UT) can be gen-
erated by an operator sum representation containing at most
pN elements,

K(x.z) => Mip(x)p(z) "M/, (3)
j=1

where M; € RP*N and 1 < r < pN.

Definition 1. (Partial trace kernel)

A partial trace kernel is an operator-valued kernel function K
having the follwing form

K(X,Z) = tr/C(Pgb(X),gb(Z))7 (1)

where Py z is an operator on £(Y ® K), and tri is the partial
trace on K (i.e., over the inputs).

Generalization of the kernel trick:

k(x,2) = (¢(X), $(2)) = tr(o(X)p(2) ")
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For computational feasibility (¢ can be infinite-dimensional)
we need to use an approximation ¢ such that

k(x, 2) = (¢(x), 6(2)) = (6(x), $(2))

Our approximated kernel will thus be
r

K(x,2) = > Mis(x)(2) "M/,
=1
where $(x) € R™ and M; € RP*M.
Approximated kernel matrix is
r
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ENTANGLED KERNEL LEARNING

We extend alignment between two matrices M and N is
defined as
<MC7 NC>F

AM,N) = S
N = M N ©

to be our closeness criterion for learning the entangled kernel.
Here subscript c refers to centered matrices, that is,
M; = HMH where H =1, — 1117, if Mis a n x n matrix.

The optimization problem:

_ Ay y T A yu |

max (1) A (l‘rp(G),Y Y) LA (G,yy ) (6)

with v € [0, 1].

» First term learns a scalar-valued kernel trp(é) with
alignment to linear kernel on outputs, Y'Y.

» Second term learns full operator-valued kernel G by
aligning it to outer product of the outputs, promoting
entanglement.

This can be solved with gradient-based approach.

Scalar-valued partial trace entangled kernel

N

After learning G, we can extract frp(G) which can be used in
scalar-valued framework, denoted ptrEKL.

Algorithm 1 Entangled Kernel Learning (EKL)

Input: matrix of features *, labels Y

// 1) Kernel learning:

Solve for Qin eq.6 (D = QQ ') within a sphere manifold

// 2) Learning the predictive function:

if Predict with scalar-valued kernel then
ci = (trp(G) + A)~TYT

else
cic = (G+ )" Tvec(Y)

ReturnD = QQ', c

O(m3 + mnp)

O(r3 + mnp?)

EXPERIMENTS

We compare our EKL to Output Kernel Learning (OKL) for
separable kernels and kernel ridge regression(KRR) to learn
outputs independently.

Simulated data created with bi-linear model TCA + ICK =Y,
algorithms are given K to solve for Y.
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FIGURE: Results (mean squared error) of the simulated experiments with

fixed amount of inputs and varying number of outputs (top), and fixed

amount of outputs and varying inputs (bottom).The advantage of learning
complex relationships is the biggest with small n.

Real Weather-dataset with p = 365 and n = 35
(www.psych.mcgill.ca/misc/fda).

n=>5 n=10 n=15
method nMSE nl nMSE nl nMSE nl
KRR 0.951 +0.101 0.000 0.813 +0.141 0.000 0.761 + 0.037 0.000
OKL 1.062 4+ 0.250 -0.092 0.900 4 0.196 -0.094 0.788 4~ 0.058 -0.034

EKL/ptrEKL 0.840 + 0.084 0.124 0.722 + 0.036 0.107 0.728 + 0.033 0.044

TABLE: Results on Weather data set averaged over 5 data partitions.

CONTRIBUTIONS

We have

» Connected the fields of quantum computing and machine
learning by using the notion of entanglement and the
Choi-Kraus quantum separability theorem in context of
kernel learning.

» Defined a general class of kernels, partial trace kernels,
that encompasses many OvK classes

» Defined smaller class of entangled kernels that are not
separable

» Derived algorithm for Entangled Kernel Learning

» Demonstrated the effectiveness of learning non-separable
Kernels
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