

CONTEXT

We consider the problem of **multi-output learning** in context of kernel methods and **operator-valued kernel learning**.

Multi-output learning

- Outputs of learning task are vectors, $\mathbf{y}_i \in \mathbb{R}^p$
- Operator-valued kernels learn vector-valued functions, and offer a natural solution to multi-output learning.

Kernel learning

- Motivation: how to choose a good kernels? Kernel learning tries to find suitable kernel based on data instead of fixing it in advance.
- Learning separable operator-valued kernels is common but restrictive:
 - all similarities share the structure

$$\begin{array}{c} \text{matrix} \\ \otimes \\ \text{matrix} \end{array} = \begin{array}{c} \text{matrix} \end{array}$$

- only symmetric interactions allowed

$$\begin{array}{c} \text{symmetric} \\ \rightarrow \end{array} \begin{array}{c} \text{matrix} \\ \otimes \\ \text{matrix} \end{array} \leftarrow \text{non symmetric}$$

- Is there a way to **learn unseparable kernels** that model more complex dependencies between input and output variables?

OPERATOR-VALUED KERNELS

Comparison of scalar- and operator-valued kernels

$$\begin{array}{c} \text{scalar-valued} \\ \begin{array}{|c|c|c|c|c|} \hline x_1 & x_2 & x_3 & x_4 & x_5 \\ \hline x_1 & & & & \\ x_2 & & & & \\ x_3 & & & & \\ x_4 & & & & \\ x_5 & & & & \\ \hline \end{array} \\ \text{operator-valued} \\ \begin{array}{|c|c|c|c|c|} \hline x_1 & x_2 & x_3 & x_4 & x_5 \\ \hline x_1 & \mathbf{T}_1 & & & \\ x_2 & & \mathbf{T}_2 & & \\ x_3 & & & \mathbf{T}_3 & \\ x_4 & & & & \mathbf{T}_4 \\ x_5 & & & & \\ \hline \end{array} \end{array}$$

	scalar-valued	operator-valued
target function	$\mathcal{K} \ni f : \mathcal{X} \rightarrow \mathcal{Y} \in \mathbb{R}$	$\mathcal{H} \ni f : \mathcal{X} \rightarrow \mathcal{Y} \in \mathbb{R}^p$
kernel function	$k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$	$K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{p \times p}$
kernel trick	$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{K}}$	$\langle K(x, x')z, z' \rangle_{\mathcal{Y}} = \langle \phi(x)z, \phi(x')z' \rangle_{\mathcal{H}} \quad \forall z, z' \in \mathcal{Y}$
representer theorem	$f(x) = \sum_i \alpha_i k(x_i, x) \quad \forall \alpha_i \in \mathbb{R}$	$f(x) = \sum_i K(x_i, x) c_i \quad \forall c_i \in \mathcal{Y}$

Examples of operator-valued kernels

- Separable:

$$K(\mathbf{x}, \mathbf{z}) = k(\mathbf{x}, \mathbf{z})\mathbf{T} \quad \forall \mathbf{x}, \mathbf{z} \in \mathcal{X}$$

where k is a scalar-valued kernel and $\mathbf{T} \in \mathbb{R}^{p \times p}$ is symmetric

- Sum of separable:

$$K(\mathbf{x}, \mathbf{z}) = \sum_l k_l(\mathbf{x}, \mathbf{z})\mathbf{T}_l, \quad \forall \mathbf{x}, \mathbf{z} \in \mathcal{X},$$

k_l are scalar-valued kernels, $\mathbf{T}_l \in \mathbb{R}^{p \times p}$ are symmetric

- Transformable:

$$K(\mathbf{x}, \mathbf{z}) = [\tilde{k}(S_m \mathbf{x}, S_l \mathbf{z})]_{l,m=1}^p, \quad \forall \mathbf{x}, \mathbf{z} \in \mathcal{X}$$

where $\{S_t\}_{t=1}^p$ are mappings which transform the data from \mathcal{X} to another space $\tilde{\mathcal{X}}$ where \tilde{k} is defined.

PARTIAL TRACE KERNELS

$$\text{Tr} \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} = \cdot \quad \text{Tr}_{\mathcal{K}} \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Trace

Partial trace

Definition 1. (Partial trace kernel)

A partial trace kernel is an operator-valued kernel function K having the following form

$$K(\mathbf{x}, \mathbf{z}) = \text{tr}_{\mathcal{K}}(\mathbf{P}_{\phi(\mathbf{x}), \phi(\mathbf{z})}), \quad (1)$$

where $\mathbf{P}_{\mathbf{x}, \mathbf{z}}$ is an operator on $\mathcal{L}(\mathcal{Y} \otimes \mathcal{K})$, and $\text{tr}_{\mathcal{K}}$ is the partial trace on \mathcal{K} (i.e., over the inputs).

Generalization of the kernel trick:

$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \text{tr}(\phi(\mathbf{x})\phi(\mathbf{z})^\top)$$

OPERATOR-VALUED KERNEL CLASSES

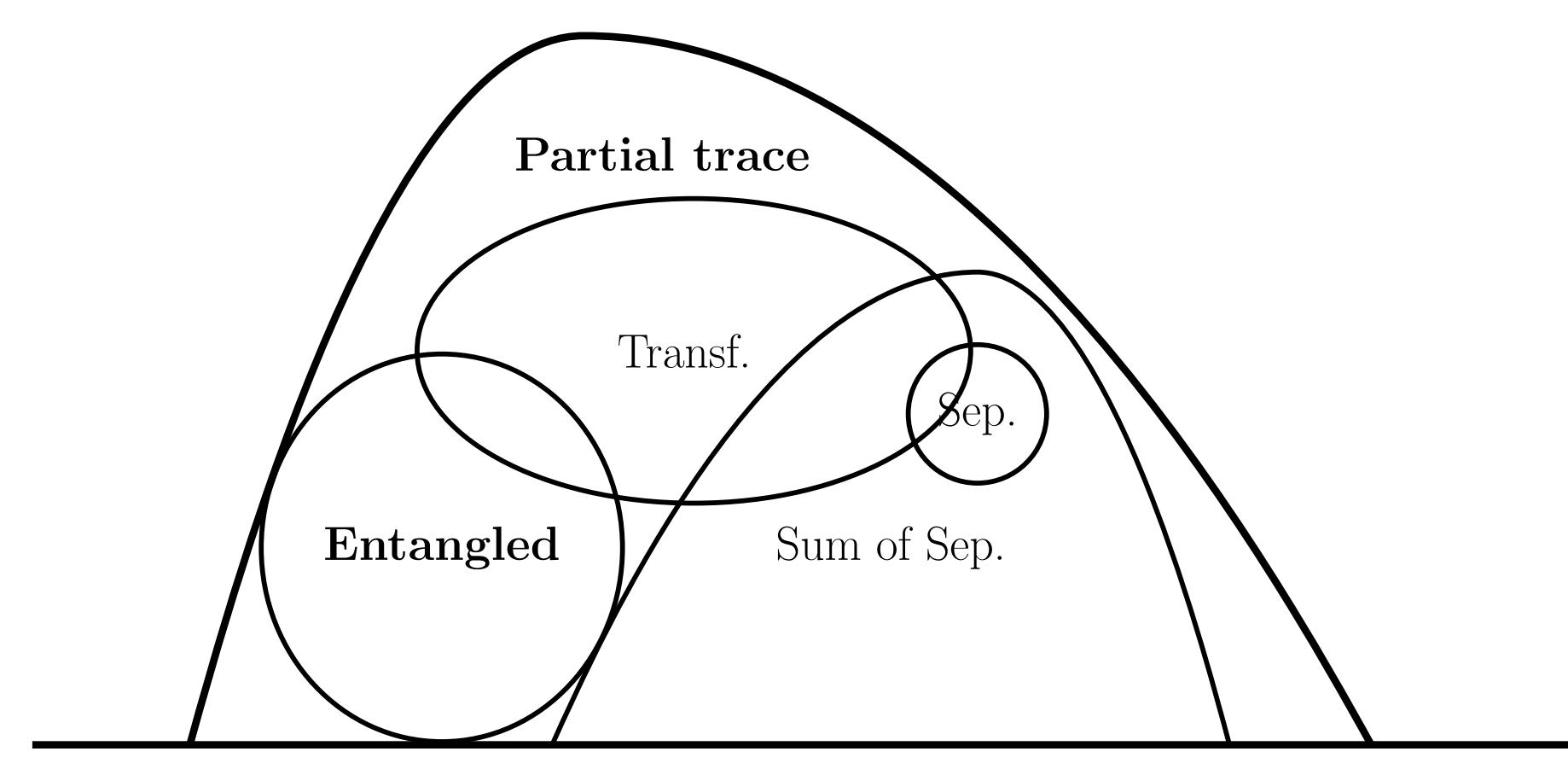


Illustration of inclusions among various operator-valued kernel classes.

Example 1. (Transformable and not separable kernel) On the space $\mathcal{X} = \mathbb{R}$, consider the kernel

$$K(\mathbf{x}, \mathbf{z}) = \begin{pmatrix} \mathbf{xz} & \mathbf{xz}^2 \\ \mathbf{x}^2\mathbf{z} & \mathbf{x}^2\mathbf{z}^2 \end{pmatrix}, \quad \forall \mathbf{x}, \mathbf{z} \in \mathcal{X}.$$

- Transformable: choose $\tilde{k}(\mathbf{x}, \mathbf{z}) = \mathbf{xz}$, $S_1(\mathbf{x}) = \mathbf{x}$, and $S_2(\mathbf{x}) = \mathbf{x}^2$
- For a separable kernel the matrix \mathbf{T} is always symmetric and since the matrix $K(\mathbf{x}, \mathbf{z})$ is not, K is not a separable kernel

Example 2. (Transformable and separable kernel) Let K be the kernel function defined as

$$K(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle \mathbf{T}, \quad \forall \mathbf{x}, \mathbf{z} \in \mathcal{X},$$

where $\mathbf{T} \in \mathbb{R}^{p \times p}$ is a rank one positive semidefinite matrix.

- K is separable by construction.
- Since \mathbf{T} is of rank one, it follows that $\mathbf{T} = \mathbf{uu}^\top$ and $(K(\mathbf{x}, \mathbf{z}))_{lm} = \mathbf{u}_l \mathbf{u}_m \langle \mathbf{x}, \mathbf{z} \rangle$.
- We can see that K is transformable by replacing $\tilde{k}(\mathbf{x}, \mathbf{z})$ by $\langle \mathbf{x}, \mathbf{z} \rangle$ and $S_t(\mathbf{x})$ by $\mathbf{u}_t \mathbf{x}$, $t = 1, \dots, p$.

Example 3. (Partial trace contains sum of separable) Choose

$$\mathbf{P}_{\phi(\mathbf{x}), \phi(\mathbf{z})} = \sum_l \mathbf{T}_l \otimes (\phi_l(\mathbf{x})\phi_l(\mathbf{z})^\top).$$

Example 4. (Partial trace contains transformable) Choose

$$[\mathbf{P}_{\tilde{\phi}(\mathbf{x}), \tilde{\phi}(\mathbf{z})}]_{l,m} = (\tilde{\phi} \circ S_l(\mathbf{x}))(\tilde{\phi} \circ S_m(\mathbf{z}))^\top.$$

ENTANGLED KERNELS

Definition 2. (Entangled kernel)

An entangled operator-valued kernel K is defined as

$$K(\mathbf{x}, \mathbf{z}) = \text{tr}_{\mathcal{K}}(\mathbf{U}(\mathbf{T} \otimes (\phi(\mathbf{x})\phi(\mathbf{z})^\top))\mathbf{U}^\top), \quad (2)$$

where $\mathbf{U} \in \mathbb{R}^{pN \times pN}$ is not separable (i.e. it cannot be written as product $\mathbf{A} \otimes \mathbf{B}$).

Remark. Entangled kernels are subclass of partial trace kernels

Example 5. (Entangled and transformable) Choose linear kernel $(\phi(\mathbf{x}) = \mathbf{x})$ and mappings S_m to be linear, such that we can write matrix $\mathbf{U} = \text{diag}([\mathbf{S}_1 \dots \mathbf{S}_p])$. Now the entangled kernel with operator

$$\begin{aligned} \mathbf{P}_{\phi(\mathbf{x}), \phi(\mathbf{z})} &= \mathbf{U}([\mathbb{I}_p \mathbb{I}_p^\top \otimes (\mathbf{xz}^\top)]\mathbf{U}^\top \\ &= \mathbf{U}([\mathbf{xz}^\top]_{l,m=1}^p)\mathbf{U}^\top \\ &= [\mathbf{S}_l \mathbf{xz}^\top \mathbf{S}_m^\top]_{l,m=1}^p \end{aligned}$$

is clearly also transformable with \tilde{k} a linear kernel.

Theorem 1. (Choi-Kraus representation)

The map $K(\mathbf{x}, \mathbf{z}) = \text{tr}_{\mathcal{K}}(\mathbf{U}(\mathbf{T} \otimes (\phi(\mathbf{x})\phi(\mathbf{z})^\top))\mathbf{U}^\top)$ can be generated by an operator sum representation containing at most pN elements,

$$K(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^r \mathbf{M}_i \phi(\mathbf{x}) \phi(\mathbf{z})^\top \mathbf{M}_i^\top, \quad (3)$$

where $\mathbf{M}_i \in \mathbb{R}^{p \times N}$ and $1 \leq r \leq pN$.

For computational feasibility (ϕ can be infinite-dimensional) we need to use an approximation $\hat{\phi}$ such that

$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle \approx \langle \hat{\phi}(\mathbf{x}), \hat{\phi}(\mathbf{z}) \rangle$$

Our approximated kernel will thus be

$$\hat{K}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^r \hat{\mathbf{M}}_i \hat{\phi}(\mathbf{x}) \hat{\phi}(\mathbf{z})^\top \hat{\mathbf{M}}_i^\top,$$

where $\hat{\phi}(\mathbf{x}) \in \mathbb{R}^m$ and $\hat{\mathbf{M}}_i \in \mathbb{R}^{p \times m}$.

Approximated kernel matrix is

$$\begin{aligned} \hat{\mathbf{G}} &= \sum_{i=1}^r \text{vec}(\hat{\mathbf{M}}_i \hat{\Phi}) \text{vec}(\hat{\mathbf{M}}_i \hat{\Phi})^\top \\ &= \sum_{i=1}^r (\hat{\Phi}^\top \otimes \mathbf{I}_p) \underbrace{\text{vec}(\hat{\mathbf{M}}_i) \text{vec}(\hat{\mathbf{M}}_i)^\top}_{\mathbf{D}_i} (\hat{\Phi} \otimes \mathbf{I}_p) \\ &= (\hat{\Phi}^\top \otimes \mathbf{I}_p) \mathbf{D} (\hat{\Phi} \otimes \mathbf{I}_p) \end{aligned}$$

$$\hat{\mathbf{G}} = (\hat{\Phi}^\top \otimes \mathbf{I}_p) \mathbf{Q} \mathbf{Q}^\top (\hat{\Phi} \otimes \mathbf{I}_p) \quad (4)$$

ENTANGLED KERNEL LEARNING

We extend alignment between two matrices \mathbf{M} and \mathbf{N} defined as

$$A(\mathbf{M}, \mathbf{N}) = \frac{\langle \mathbf{M}_c, \mathbf{N}_c \rangle_F}{\|\mathbf{M}_c\|_F \|\mathbf{N}_c\|_F} \quad (5)$$

to be our closeness criterion for learning the entangled kernel. Here subscript c refers to centered matrices, that is, $\mathbf{M}_c = \mathbf{HMH}$ where $\mathbf{H} = \mathbf{I}_n - \frac{1}{n}\mathbf{1}\mathbf{1}^\top$, if \mathbf{M} is a $n \times n$ matrix.

The optimization problem:

$$\max_{\mathbf{Q}} \quad (1 - \gamma) A(\text{tr}_p(\hat{\mathbf{G}}), \mathbf{Y}^\top \mathbf{Y}) + \gamma A(\hat{\mathbf{G}}, \mathbf{y} \mathbf{y}^\top) \quad (6)$$

with $\gamma \in [0, 1]$.

- First term learns a scalar-valued kernel $\text{tr}_p(\hat{\mathbf{G}})$ with alignment to linear kernel on outputs, $\mathbf{Y}^\top \mathbf{Y}$.
- Second term learns full operator-valued kernel \mathbf{G} by aligning it to outer product of the outputs, promoting entanglement.

This can be solved with gradient-based approach.

</div